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A.  INTRODUCTION:

Although the effective date of the grant was June 1, 1965, the formal
research effort started with the academic year, that is, September 1, 1965.
Consequently, this report covers a period of three months.

The research effort of the first three months has been devoted largely
to the following tasks: 1) study of relevant literature, 2) formulation
of a mathematical description of the vibration problem and of a set of
governing integral equations 3) outlining the approach to be employed in
obtaining a solution, and 4) developing a solution of the fundamental
(Green's function) problem which provides the basis for the solution of
the general boundary value problem.

The progress in each of these tasks is discussed in the following
sections of this report. )

B. LITERATURE SURVEY:

The literature that appears to be relevant to this study falls into
three categories: (l) that which deals directly with the spherical shell
vibration problem, (2) the literature on plate and shell theory pertinent
to the fundamental Green's function problem, and (3) the literature on
mathematical methods applicable to the solution of either the fundamental
problem or the governing equations of the general problem.

The basic literature (together with recent contributions) on spherical
shell vibration has been reviewed with the objective of gaining insight into
the physical features of the problem, as well as of achieving a familiarity
with alternate approaches to shell vibration problems.

In the area of plate and shell theory, basic works of such authors as
Flugge,~Timoshenko, Love, E. Reisner, have been studied to establish and
guide the solution of the governing differential equations of the fundamental
problem. Related studies of the plate onanelastic foundation have also
been reviewed.

To develop a solution to the governing differentiasl equations for the
fundamental problem, basic works on differential equations and mathematical
analysis have been reviewed, Also literature on numerical analysis and
matrix methods have been studied to provide guidance in the solution of the
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governing integral equations of the general boundary value problem.

C. MATHEMATICAL FORMULATION OF THE PROBLEM:

A formulation (employing a Green's function approach) of the general
spherical shell vibration problem has been developed as part of the first
three months research effort. This formulation is outlined in the following
paragraphs. (A more complete description is presented in Appendix I.)

The vibration problem (with damping not included) is first replaced by
an equivalent static problem. The inertial loading of the dynamic problem
is replaced by a distributed static load proportional to the displacement.
Additionally, an artifice of an elastic foundation is introduced in the
static problem such that the foundation reaction is proportional to the
displacement vector but in opposite sense., Thus if the applied load is
proportional to displacement, then also the net load on the shell (applied
load less foundation reaction) adheres to this proportionality. Symbolically:

(a) For the vibration problem

T = uwd
where,
'a = inertial shell force per unit surface area
p = shell mass per unit surface area
w = natural angular frequency
T = displacenent vector of the middle surface
(b) For the shell on the elastic foundation

ol
i

1 - 1 -~
-k— ‘t - ku = (X - k) u
where

d = net load on shell (per unit surface area)

?J
L]

proportionality factor between applied load and displacement
k = Tfoundation modulus '




Consequently if (%'— - k) is made equal to w2 , the static problem
is equivalent to the vibration problem.

The equivalent static problem is next formulated in terms of fundamental
influence functions. In brief, if the displacement and stress fields are
known for a unit load (and unit couple) applied to a point on the complete
sphere (on an elastic foundation), then through superposition the required
relationships may be written satisfying boundary conditions (specified
along a given contour) as well as the condition that the applied load be
proportional to displacement.

For condensed notation, let:

A(m,n) be the displacement vector at point m (on the sphere) due
to a unit load vector applied at point n on the sphere.

B(s,n) be the boundary condition "residual" vector* (four dimensional)
at point s on the contour, C, due to a unit load vector at
point n.

c(s,t) be the boundary condition residual vector at point s on the
contour C due to corrective load system unit vector**(four
dimensional) at point t on the contour, C.

D(m,t) be the displacement vector at point m on the sphere due to

the corrective load unit vector at point t on the contour, C.

'EI (n) be the applied load (intensity) vector at point n

2 (m) be the displacement vector at point m

-

L (t) be the contour corrective load system at point t on the contour, C.

Then employing superposition, the specified boundary conditions along C
are satisfied if the boundary condition "residuals" vanish; that is,

[ I3(s,m)2m) a0+ | c(s,8)Tt) as = o (1)
s* c
The applied load-displacement relationship is also obtained from superposition,

jsj A(m,n) §(n) do + jc D(m,t) T(t) ds = u(m) (2)

* The boundary condition residuals refer to deviations from four specified
boundary conditions along the contour, C.

%%  The corrective load vector includes four components of a load system
(three force components and one force-couple) applied to the sphere at
the contour, C.
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Were the function L(t) eliminated between equations (1) and (2)
(by means of inverse operators), the resulting equation could be symbolized by:

U 6(m,n) Y(n) & = B(n) (3)
Then for q(n) = %?x(n), equation (3) becomes
U G(m,n) A(n) do = »W(m) )

which defines the eigenvalue problem for the general static equivalent problem,

and hence, for the original vibration problen.

D. PROBLEM SOLUTION:

The solution of the general boundary value problem defined in the
preceding section (the static equivalent to the vibration problem) can be
conveniently divided into two general efforts. First, the influence functions
(or Green's functions) that appear in the governing integral equations (1)
and (2) must be obtained. Secondly, a general method must be developed for
the solution of the integral eguations.

Considering first the Green's functions, the research effort to date has
consisted of the following activities: (1) definition of the auxiliary
problems (of which the Green's functions are solutions) (2) development of
the governing differential equations and (3) development of a series solution
of these equations under the appropriate boundary conditions. CThese equations
and their solutions are discussed further in section E)

The auxiliary problems are concerned with displacements and stress
resultants arising from a unit force or unit foree couple applied to the
complete sphere on the elastic foundation. Specifically, three separate
problems require solution and are defined by the application to the spheredf:

(1) A unit normal load
(2) A unit tangential load
(3) A unit couple (with tangential axis).



In each of these problems the displacements and stress resultants are
sought; however, as the stress resultants are expressible as functions
of derivatives of displacements, a solution in terms of displacements is
sufficient.

Moreover, since a rotation of the middle surface is a directional
derivative of normal displacement, then from Betti's reciprocal theorem,

a solution to problem (3) (for the unit couple) is provided directly by
solutions to problems (1) and (2). Finally, if the normal load problem
(1) is first solved, the solution to problem (2) is in part obtained again
by means of the reciprocal theorem; that is, the normal displacements for
the unit tangential load would be obtained.

In summary then, the auxiliary problems reduce to (A) solving for
displacements resulting from a unit normal load and (B) solving for the
tangential components of displacement resulting from a unit tangential load.

Turning next to the solution of the integral equations (once they are
obtained), the research effort to date has been limited to the formulation
of a suitable numerical approach. In essence, the method consists of solving
a finite difference approximation to the integral equations, with the integral
operators replaced by influence matrices and the unknown functions by
n-dimensional vectors (corresponding to n points on the surface). The
eigenvectors and eigenvalues would then be found by the Vianello-Stadola
iterative method. The steps in the numerical solution are described in

more detail in Appendix II.

E. THE GREEN'S FUNCTIONS:

The research effort to date in the area of development of the Green's
functions, has been limited to obtaining equations and developing a solution
to the first fundamental problem (that of the unit normal load applied to
the spherical shell on an elastic foundation). The equations were derived
and compared with those found in several references.* These equations were'_
then modified by a variable substitution to eliminate trigonometric coeffi-

cient functions.

* Bx: Flugge, Stresses in Shell.




The fundamental set of solutions for the resulting differential
equations were developed in the form of powers series (with a logarithmic

coefficient function appearing in one solution).
The recursion formulae associated with the series solutions have

been programmed for computer evaluation. The required boundary conditions

are enforced in the computer solution.
The details of the reformulation and the series solution of the

equations are presented in Appendix III.



APPENDIX I  MATHEMATICAL FORMULATION

The natural frequencies and mode shapes are sought for a segment of a
spherical shell subject to specified boundary conditions. As developed in
section (C) of the report text, a substitute static equivalent problem is
instead considered, in which a complete spherical shell on an elastic
foundation is loaded over that portion of the spherical surface enclosed by
a contour C (corresponding to the edge of the segment) and loaded by line
loads and moments, along the contour C. The conditions to be met in order
to make the two problems equivalent are (1) the static distributed surface
force must be proportional to displacement (2) the desired boundary conditions
must be enforced along the contour C.

To simplify the present discussion, we consider the case of a free
boundary (along contour C); that is, the stress resultants (per unit length)
along the edge must be zero. According to Kirchhoff's formulation, Nh, Nﬁt’
Mn and VA must each vanish at the boundary, where referring to the sketches,

Fbrces/unit length Force couples/unit length

Nn & Nnt are membrane stress resultants

Mn is the bending moment

aM
V. = (Qn + azt), a static equivalent normal edge reaction.




If we denote the four quantities Nn’ Nnt’ Mn’ Vn by Rl’ R2, R3, Rk and
refer to them as boundary condition "residuals", we note the boundary conditions
are met if, Ri = 0 along the contour C.

Next consider possible "line loads" applied to the complete sphere along

the contour, which loads are to assist in meeting the boundary conditions.

Referring to the above sketch, let:

L2, L,, L; be rectangular components of force (per unit length) which are
respectively, tangential to the curve C, normal to the surface,
and in the third orthogonal direction

be a force couple (per unit length) with axis tangential to the

curve C.

If we introduce a reference polar axis for the complete sphere, surface
points may be located by the polar codrdinates ¢ and 6, the latitudinal and
meridinal angles respectively, (g measured from the pole).

Let two three-dimensional vectors Yy Yy (greek indices for three
dimensions) be defined such that:

Q5 %o q3 are components of the applied surface force (per unit surface
area) in normsl direction, tangential to the meridian circle,

and tangential to the latitude circle, respectively.

are the displacement components of the shell middle surface (in

Ups Uy u.3
the normal, and two tangential directions, respectively).



We define next the Green's functions:
AaB(¢,e,5§) as the displacement u, (at point g,6) due to an applied force
vector pB (at point @,8) whose components are each unity.

BiB(s,B,é) as the boundary condition residuals R, (at point s on the

contour C) due the same applied force vector pB(at 3,0)

Cii(s,t) as the boundary condition residuals Ri(at point s on contour C)
due to an applied line load systenm Kj (at point 1 on contour C)

whose components are each unity.

Daj(¢’e’t) as the displacement u, (at point g,8) due to the same line load
system Kj (at point t).

Then for the applied force, qB acting over the surface element dg, we may
express the resulting contribution to the boundary condition residuals:

3
ARy =qud° Big
8=1
or employing the sumation convention (for repeated indices):
dRi(t) " BiB do (a function of t).

Similarly, for an applied force system, Li acting over the arc length ds

(of the contour C), the contribution to residuals is:

Thus through superposition, the requirement that residuals vanish along

contour C is met if,

jsj Byg (6:5,8) a5 (5,8) o + jc C;y (£58) Ly(s) as = 0 (1a)




In a similar fashion, the contributions to displacement, from the
applied surface load %Yy (acting on dg) and the line load Li (acting over ds)

are respectively:

e
foh
c
i}
t

dua = qBAas

and hence, the displacement at surface point (g,9) is:

J"S[ Ays(#0:958) a5(d,8) do + j.c Dy;(#:8:8) Ly(s) ds = u (g,0) (2a)
The formulation of the problem is completed with the further requirement
that

a, (8,8) = = u(s,6) (30)

where X\ is the eigenvalue of the problem.

APPENDIX II  METHOD OF SOLUTION

If the integral equations (la) and (2a), of Appendix I, are replaced by
finite difference approximations to these equations, the integral operators
become rectangular matrices and the functions u, qa and Li become oo lumn
matrices (or "vectors").

Let the surface S (enclosed by the contour C) be subdivided into N
elements, the nth element denoted by Aon.

Also let the contour C be subdivided into M segments, with As denoting
th o
the m segment.
The integrals of equation (la) may then be approximated by mechanical
guadratures; for example,
N
r ’
" B, do = z B, (m,n n) Ac
Jo s % 15(m2) ag(n) Ao,

n=1
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where B“.B (m,n) is BiB evaluated at the central points of the n'? segment
on contour C and the n surface element.

qB(n) is the central value of qﬁ for surface element Acn.

Next let the symbol [B] denote a 4M by 3N rectangular matrix whose
element in row [4(m-1) + i] and column [3({n-1) + B] is By (m,n) Ac . Also

let T be a column matrix whose element in row [3(n-1) + B] is qﬁ(n). then

N :
). Biglmn) aln) As, = (3173

n=1

We define other rectangular and column matrices correspondingly to
represent the other integral operators and functions asppearing in equations
(1a2) and (22):

Matrix Element Row Column
[c3 Ci'j(m,p)Asp Lm-1) + i L{p-1) + j
(4] agg(monlasy 3(s-1) + @ 3(a-1) + B
[D] Dy ;(TsP)As, 3(r-1) + @ b(p-1) + 3
I Lj(p) b(p-1) + §
u u () 3(r-1) + @

The mechanical quadrature approximation to equations (la) and (2a) is then:

0 (1v)

[ <l
1}

Bl + [c]
q

fa + [D} L u (eb)

If [C-l] denotes the inverse of matrix [C], then from equation (1b):

T = -[cIBlg (3b)



This may be substituted into equation (2b) to obtain:

-

(Al -[Di[c™1[B]1 T = &

or

{ta) -o3c™ B2} @ = & (kb)
Finally, if q = %-'ﬁ, we may write:

[6]3d = AU (5b)

where

cpaeloco )
(6] = {[al -[o3rc™cel}

The eigenvalue problem symbolized by equation (5b) may be solved
conveniently by the Vianello-Stadola iterative method. Upon obtaining each
eigenvalue and mode shape,the matrix [G] is then purified of that mode shape

characteristic such that higher order modes and eigenvalues will emerge.

APPENDIX III  SOLUTION OF FIRST FUNDAMENTAL PROBLEM

The first fundamental problem is that associated with a spherical
chell on an elastic foundation subjected to an gpplied unit normal load. If
the wnit normal load is located at the pole (¢ = O) then the problem possesses
polar symmetry. Employing the notation and sign conventions used by Timoshenko
in "Theory of Plates and Shells', the stress resultants for the polar symmetric

problem are as they appear in the sketch below:




Equilibrium of the element leads to:

(Nﬁro) ~-Nrcosg - (Qwro) = -r rY

6 0
(N¢ro) + Nr sin g + (Q¢ro) = -TrZ (1c)
Qﬁror = (M¢ro) - M.r cos g

(-3
where ( ) denotes Q_%l .

For the symmetric problem, stress-strain and strain-displacement
relationships may be combined to obtain expressions for the stress resultants

in terms of displacements:

o
N;zs = %—[(v - W) + vw(v cot ¢ -w)}
X7/~ - =° =\
Ne = ;-[(v cot g = W) + v = W)J
(2¢)
D - -0 o - «®
M =--—-((v+w) + v(v+w) cot¢:‘
g 2l
o o ©
M =--)Lr(x7+w) cot g+ vw(v+w) _]
o~ " 2L J
Eh3 Eh - -
vwnere D = —- K= — v = poisson's ratio and w, v are
12(1-v7) (1-v7)
displacement components.
The elastic foundation reaction loads are:
Y = -kv s Z = -kw (k is the foundation modulus.) (3e)

Defining dimensionless variables and constants:

- - 2
W v D kr

W = o= V = o= O = =—— B:—— >
r r Kr2 K

the substitution of expressions (2c) and (3c) into the equilibrium equations

(1c) leads to two equations in v and W:



o o 1+ o _. 2 . 2
L(v) + 15 LO°) -y wosin g -y velntg = 0 (he)

3

g+ Vv s:m2 @ cos g - 2w sin ¢] - —-w sin” g =

(5¢)

Jw°) + J(v) - l;y [ve sind

where the operator L( ) and J( ) are defined by:

( )ee sin2¢ + ( )° sin g cos g =( )(cosa¢ + v sin2¢

L( )

J( ) = ( )°°°sin3¢ + 2( )°°sin2¢ cos g -( ) (v sin3¢ + sin g) + ( )[(l-v)

sin2¢ cos g +cos ¢1
-

The higher order derivatives of v appearing in equation (5c) may be eliminated
by subtracting sin g EE-(egpao*on Le) and adding cos g (equation 4c). Additionally,
the trigonometric coefficient functions may then be eliminated in both

equations through the introduction of new variables:

x = sin ¢ and y = co: 2
The resulting two equations are:

G(y) + ':LTO:E G(W') - (1+\)) XEW' -[(l+\)) + -J-.-E—d-] x2y =0 (I)

H() - (22 (an) -] TG - Pyt v 68 - ax'y] =0 (11)
where:

() =&

6l ) = GE-x) () (x-S ) - ()

B ) = (S -20 +x)( )V 4 (@2 - 105+ 8O ) -

(x + 8x> - 12x5)( it () == l+a F2(1+ ) + B] 3(
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The boundary conditions tc be met at the pole, g = O, are:

w'(0) = 0, y(0) =0 and lim (Q.2nx) =1
x=0 ¢
A sufficiently large value of the elastic foundation constant 8 is
assumed to insure rapid decay of displacements and stress resultants with
inereasing ¢ (in the physical problem) such that a negligible error is
introduced if stress resultants are set equal to zero for an appropriately
large value of x (say xl). Thus at x = X5 the boundary conditions become:

N¢(xl) =0, M(xy) =0, Q¢(xl) =0

It is possible to obtain formally series solutions (in x) for w and

y of the form:

0 =]
W= Ej a xr+n y = §1 b xr+n
n L, n
n=0 n=1l

The indicial equations of the differential equations I and II are
then respectively:
r (r-2) = 0

re(r--E)2 = 0

Alithough the roots (r = 0,2) differ by an integer, independent solutions
corresponding to each root are obvtainable, as the second order recurrence

relationship for equation II is identically satisfied for arbitrary 8yt

0 - a2 = 0

Consequently, the solutions take the form of ordinary power series in X:

w = Zanxn oy = zbnxn (6¢c)

n= n=1
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Thus three linearly independent solutions are obtained by letting the
arbitrary constants ays 8 and bl each independently be non-zero
(while the remaining two are zero). Moreover, the solutions so obtained

satisfy identically the boundary conditions:

Wl(o) =0 > y(0) =0

Consequently, the four remaining boundary conditions require for their
satisfaction a fourth linearly independent solution. The repeated roots of
the indicial equation (for the differential equation II) suggest a solution
of the form

w = W(1lnx) + chxn y = §(inx) + Zdnxn (Te)

o]
where W and f? are a combination/series solutions already obtained.
It may be verified that a fourth solution consistent with the boundary
conditions on w and y can be found formally, if ’

~
Q: z/;nxn 3 /y\ = Zb xn
where:
AR o - -2
a) =0 o, = -5 A (8c)
Tne coefficients oy Cps dl are arbitrary and for convenience are

set equal to zero.
Four recurrence formulae are obtained upon substitution of (6¢) and (7c)

(under conditions 8c) into equations I and II:

Hoby = b ,+Hya ) +H a 4
Jl &, = J2 ¥ J3 8 + Jh bn-3 + JS bn-5
_ ”~ I~ 7~ 7~
Hydy = HByd s+He +Hc +Ka+Ka ) +XK Db KD,
A A ~ ~
chn = J2cn-2 + J3cn-h + Jhdn-3 + JSdn~5 + Llan + Lban-E + L3an_4 + Lb’bn_3
+ LD
5 n-5

(9¢)
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H, = (n-1)(n+1)
H, = (n-2) (n+1) + [(1+v) + iga
H3 = - 3.%5 (n-.l)(n+l)2
[0
H, = 15 (o-1) [(n+l)(n+2) + (1+v)]
Jy = na(n-2)2
T = 2(n-2)3(n-3)
7y = -(a-2)(a-3) (a-4) (a-5) - Z2[2(2+v) + g

3, = [lgg.(l+v) -B] (n-2)

35 = {22 (1+v) -] (a-3)

K, = - To5 (n+1)(3n-1)

Ky = 15 [ (a-1)(30-1)-2 ] + (14v)
K; = -2n

Kk, = (2n-1)

L, = -kn(n-1)(n-2)

L, = 2(n-2)2(hn-11)
Ly = -2{(a-#) (a-5)(2n-3) +4] -1}
I, = [52 (1+v) -8]

- 2 0o 4]

. A
The arbitrary constants ao, a2, bl and a,

the remaining four boundary conditions:

Lm(q 2m) =1, Q) =0, () =0

i7

2

may be found by applying

M¢(xl) =0



